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ABSTRACT 
 

Damage assessment of composite blades is investigated for hydrokinetic turbine applications in which low-
velocity impact damage is possible. The blades are carbon/epoxy laminates that are made using an out-of-autoclave 
process and the blade design is a hydrofoil with constant cross-section.  Both undamaged and damaged blades are 
manufactured and instrumented with strain sensors. Water tunnel testing is conducted with varying flow velocities and 
for different blade angles. A theoretical simulation is included that is based on finite-element method.  The influence of 
damage on the response characteristics is discussed as an indicator of structural health.   
 
Index Terms – health monitoring, composite blades, strain analysis, smart structures 
 
 

1. INTRODUCTION 
 

Hydrokinetic systems utilize the kinetic energy of flowing water to generate power [1].  Such systems are 
potential sources of renewable energy from both rivers and ocean tides [2-3].  Economic studies have encouraged the 
development of hydrokinetic technology [4].  Important aspects of any field implementation are operating and life cycle 
costs associated with inspection and maintenance.  While the electrical behavior of hydrokinetic systems can be 
monitored, structural health monitoring technology for system components has not been well developed. In particular, 
rotating blades and turbines are typical elements in hydrokinetic systems and they are subject to extreme marine 
conditions.   
 

Smart structures technology is an interdisciplinary approach to health monitoring [5].  It requires knowledge of 
materials and sensors as well as the application.  Composite materials and strain sensing are the topics relevant to this 
work.  Composite materials have been applied in many areas including those for marine environments.  Its use in 
turbine blades is an ongoing area of study.  Strain sensors of many types have been used to characterize composite 
materials.  The use of sensors in moving structures creates new challenges as opposed to monitoring behavior in static 
load bearing applications.  Our prior work has examined the behavior and characterization of composites using strain 
sensing [6-10].  We have made preliminary investigations of composite turbine blades [11].   This work extends prior 
experiments by investigating more practical blade designs and blade performance in water. 
 

In this work, composite blade performance and instrumentation are investigated. Three-dimensional, multilayer 
blades are considered for static loading and water flow testing. These structures are carbon/epoxy, symmetric composite 
laminates that were manufactured using an autoclave process. Performance of both undamaged and damaged blades is 
investigated to determine load-induced strain as an indicator of structural health.  Experimental results for strain 
measurements from electrical resistance gages are presented in preparation for later embedded sensors. Also, theoretical 
strain characteristics are presented from in-house, finite element analysis for all sample cases.   
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 A cross sectional view of the hydrofoil manufactured is shown in Figure 3. The hydrofoil is composed of an 
upper and a lower half. Both halves were manufactured by a single out-of–autoclave process using Cycom 5250, a 
unidirectional carbon fiber prepreg.  The fiber was layed-up on the mold in a three layer configuration of [90o/0o/90o], 
with 0o along the hydrofoil span. The two halves were vacuumed sealed to the mold and cured using the cycle provided 
by Cytec, the prepreg manufacturer. Once cured, excess material was removed and the halves were then bonded 
together using a two-part phenolic epoxy.  The root section was then formed from particulate reinforced epoxy putty 
using a two-part mold and cured at room temperature. 

 

 
 

 Figure 3. Cross Sectional View of Hydrofoil. 
 

Basic information related to the three-layer composite blade, in terms of material type and lay-up is listed in 
Table 1.  Material properties of the composite blades are listed in Table 2. 
 

Table 1. Basic Information for the Three-layer Composite Blade. 
 

Material Type CYTEC (Cycom 5320/AS4) 

Lamina Thickness 0.127 cm (0.005 in.) 

Lay-up Sequence [90/0/90]  

 
Table 2. Material Properties for the Three-layer Composite Blade. 

 

 
Young’s Modulus 

E11 = 143 GPa 

E22 = E33 = 10.19 GPa 

Poisson’s Ratio ν12 = ν13 = v23 = 0.3 

Shear Modulus 
G12 = G13 = 4.01 GPa 

G23 = 3.70 GPa 

Density ρ = 1580 kg/m3 

 
2.3 Finite Element Analysis of Composite Structures 

 
A theoretical analysis was performed using the blade element momentum finite element method (BEM-FEM) 

under cantilever boundary conditions.  Loading conditions were matched to the experimental tests that are described in 
later sections.  Flexure strains at each sensor location were obtained for a static (in air) case with a mass placed at 24.13 
cm (9.5 in.) from the root.  Flexure strains at each sensor location were obtained for a water flow case with specific 
conditions for water velocity and blade pitch angle.    For the later case, hydrofoil theory was used to integrate the force 
over the boundary of the hydrofoil and obtain the normal and tangential (reference to the blade chord surface) loadings. 
The normal/tangential loadings were then applied on the blade surface using finite element method. 
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Load calculation:  
At specified angle of attack , the lift and drag coefficients C  and C  are extrapolated from the hydrofoil 

table which includes the relationship between C  / C and .  The lift L and drag D per unit length can be computed by  
 = 12 U C  

= 12 U C  

 
where  is flow density, U  is flow velocity and  is chord length. The force normal to and tangential to the blade can 
be obtained by  = +  = −  

These loads serve as the input to the finite element model. 
 

Figure 4 and Figure 5 show the finite element model for the undamaged and damaged composite blades, 
respectively.  Hydrodynamic loadings are applied as concentrated forces on the blade surface at different stations using 
MPC (Multi-point constraint) technique.  The sensor locations are indicated. 
 

 
 Figure 4. Finite Element Model of the Composite Blade. 
 

 
Figure 5. Finite Element Model of the Damaged Composite Blade. 
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3. EXPERIMENTAL PROCEDURE 
 

3.1 Strain Instrumentation 
 

The three electrical resistance strain gages were located for flexure measurement as shown in Figure 6 and 
Figure 7.  These gages were 120-Ω electrical resistance gages (Micro-Measurements EA series) and the gage lengths 
were 6.35 mm (0.25 in.).  The gages were surface mounted with M-Bond 200 adhesive.  The support instrumentation 
was a Wheatstone bridge strain indicator (Micro-Measurements P-3500) and an oscilloscope.  The strain readings were 
averaged for about one minute each and varied about +1 microstrain.   
 

 
Figure 6. Undamaged Carbon/Epoxy Composite Blade with Sensor Layout (all units in cm).   
The sensor locations are 1, 2, and 3 from left to right. 
 

 
Figure 7. Damaged Carbon/Epoxy Composite Blade with Sensor Layout (all units in cm). 
The sensor locations are 1, 2, and 3 from left to right. 

 
3.2 Strain Measurements 
 

The static test case was to determine the static flexural strain.  The undamaged blade was clamped horizontally 
in the mounting hub and a mass of 244.3 grams was placed 24.13 cm from the root of the blade, as shown in Figure 8.  
The average strain values were then recorded.  This test was then repeated for the damaged blade. 

 
 
 
 
 
 
 

Figure 8. Experimental Setup of Static Blade Test. 
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4. RESULTS AND ANALYSIS 

 
Results of the static blade loading are shown in Table 3.  Strain 1, 2, and 3 are the strain values in microstrain 

from sensor locations 1, 2, and 3, respectively.  Results are shown for the undamaged blade for all locations.  The 
damaged blade root section broke after the data for location 1 was taken. The blades were stiff and the damage made 
little difference in the strain value at the first sensor location.  

 
Table 3. Experimental Strain Values for Static Loading. 

 

Blade type 
Strain 1 (microstrain) Strain 2 (microstrain) Strain 3 

(microstrain) 
Measured Measured Measured 

    

Undamaged blade -130 +1 -91 +1 -43 +1 

Damaged blade -127 +1 NA NA 
 

Results of the water flow loading at 0.11 m/s, 0.22 m.s, and 0.31 m/s are shown in Table 4, Table 5, Table 6, 
and Table 7.  The tables record the strain values for blade angles of attack at 50°, 60°, 70°, and 80°, respectively.  Both 
simulation values from the finite element analysis and the experimental (measured) values from the water tunnel are 
shown and a comparison of simulation and experimental values demonstrate good correlation.  The strains are 
compressive as expected and the strain magnitudes are largest near the blade root.  The strain magnitudes generally 
increase for higher flow velocities and larger angles of attack.   The damage in the second blade had a subtle effect on 
strain and tended to change the strain at location 1 the most.  The percent differences in the strain values at location 1 
are shown in Table 8.  The values at locations 2 and 3 were so small and measurement variations (+1 microstrain) so 
significant that quantitative comparisons are difficult.  The differences are calculated as 

 
 Percent Difference = 100% x |Simulated Strain – Measured Strain|/|Simulated Strain| 
 
Note that the closest matches tend to occur for the higher magnitudes of strain in which the signal-to-noise ratios of the 
measured results are better.  Example trends at a 70° angle for flow velocities of 0.11 m/s and 0.31 m/s are plotted in 
Figure 11 and Figure 12, respectively.  
 

Table 4. Strain Values in Water Tunnel (angle of attack: 50°). 
 

  Strain 1 (microstrain) Strain 2 (microstrain) Strain 3 (microstrain) 

Blade type Flow 
velocity  Simulated Measured Simulated Measured Simulated Measured 

        

Undamaged 
blade 

0.11 m/s -4.16 -2 +1 -2.64 -3 +1 -0.046 -2 +1 

0.22 m/s -16.5 -10 +1 -10.5 -10 +1 -1.82 -3 +1 

0.31 m/s -33.0 -34 +1 -20.8 -18 +1 -3.58 -6 +1 

Damaged 
blade 

0.11 m/s -4.37 -8 +1 -2.28 -6 +1 -2.75 -4 +1 

0.22 m/s -17.5 -20 +1 -9.15 -14 +1 -4.01 -5 +1 

0.31 m/s -34.7 -37 +1 -18.2 -27 +1 -5.03 -6 +1 
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Table 5. Strain Values in Water Tunnel (angle of attack: 60°). 
 

  Strain 1 (microstrain) Strain 2 (microstrain) Strain 3 (microstrain) 

Blade type Flow 
velocity  Simulated Measured Simulated Measured Simulated Measured 

        

Undamaged 
blade 

0.11 m/s -4.37 -4 +1 -2.75 -3 +1 -0.500 -2 +1 

0.22 m/s -17.5 -12 +1 -11.0 -10 +1 -2.00 -10 +1 

0.31 m/s -34.7 -36 +1 -21.6 -20 +1 -3.94 -19 +1 

Damaged 
blade 

0.11 m/s -4.60 -3 +1 -2.36 -6 +1 -1.24 0 to 1 

0.22 m/s -18.4 -13 +1 -9.45 -11 +1 -4.01 -2 +1 

0.31 m/s -36.6 -37 +1 -18.8 -26 +1 -5.02 -6 +1 

 
Table 6. Strain Values in Water Tunnel (angle of attack: 70°). 

 

  Strain 1 (microstrain) Strain 2 (microstrain) Strain 3 (microstrain) 

Blade type Flow 
velocity  Simulated Measured Simulated Measured Simulated Measured 

        

Undamaged 
blade 

0.11 m/s -4.58 -4 +1 -2.87 -3 +1 -0.545 -2 +1 

0.22 m/s -18.3 -13 +1 -11.5 -10 +1 -2.17 -4 +1 

0.31 m/s -36.3 -30 +1 -22.6 -25 +1 -4.27 -10 +1 

Damaged 
blade 

0.11 m/s -4.83 -7 +1 -2.44 -3 +1 -1.26 -3 +1 

0.22 m/s -19.3 -17 +1 -9.75 -13 +1 -3.99 -8 +1 

0.31 m/s -38.4 -40 +1 -19.5 -26 +1 -5.00 -10 +1 
 

Table 7. Strain Values in Water Tunnel (angle of attack: 80 °). 
 

  Strain 1 (microstrain) Strain 2 (microstrain) Strain 3 (microstrain) 

Blade type Flow 
velocity  Simulated Measured Simulated Measured Simulated Measured 

        

Undamaged 
blade 

0.11 m/s -4.73 -4 +1 -2.96 -3 +1 -0.575 -1 +1 

0.22 m/s -18.9 -16 +1 -11.8 -11 +1 -2.29 -5 +1 

0.31 m/s -37.5 -38 +1 -22.1 -26 +1 -4.51 -11 +1 

Damaged 
blade 

0.11 m/s -5.00 -4 +1 -2.50 -3 +1 -2.75 -3 +1 

0.22 m/s -20.0 -16 +1 -10.0 -11 +1 -3.98 -5 +1 

0.31 m/s -39.7 -42 +1 -20.0 -26 +1 -4.97 -11 +1 
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Table 8. Percent Difference in Strain Values for Strain 1. 
 

  Strain 1 (microstrain) 
angle of attack: 50 ° 

Strain 1 (microstrain) 
angle of attack: 60 ° 

Blade type Flow 
velocity  Simulated Measured Percent 

Difference Simulated Measured  Percent 
Difference 

        

Undamaged 
blade 

0.11 m/s -4.16 -2 +1 51.9% -4.37 -4 +1 8.5% 

0.22 m/s -16.5 -10 +1 39.4% -17.5 -12 +1 31.4% 

0.31 m/s -33.0 -34 +1 3.0% -34.7 -36 +1 3.7% 

Damaged 
blade 

0.11 m/s -4.37 -8 +1 83.1% -4.60 -3 +1 34.8% 

0.22 m/s -17.5 -20 +1 14.3% -18.4 -13 +1 29.3% 

0.31 m/s -34.7 -37 +1 6.6% -36.6 -37 +1 1.1% 
        
        

  Strain 1 (microstrain) 
angle of attack: 70 ° 

Strain 1 (microstrain) 
angle of attack: 80 ° 

Blade type Flow 
velocity  Simulated Measured Percent 

Difference Simulated Measured  Percent 
Difference 

        

Undamaged 
blade 

0.11 m/s -4.58 -4 +1 12.7% -4.73 -4 +1 15.4% 

0.22 m/s -18.3 -13 +1 29.0% -18.9 -16 +1 15.3% 

0.31 m/s -36.3 -30 +1 17.4% -37.5 -38 +1 1.3% 

Damaged 
blade 

0.11 m/s -4.83 -7 +1 44.9% -5.00 -4 +1 20.0% 

0.22 m/s -19.3 -17 +1 11.9% -20.0 -16 +1 20.0% 

0.31 m/s -38.4 -40 +1 4.2% -39.7 -42 +1 5.8% 
 
 

 
 

Figure 11. Trend Chart for Strain at 70° Angle of Attack and 0.11 m/s Flow Velocity. 
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Figure 12. Trend Chart for Strain at 70° Angle of Attack and 0.31 m/s Flow Velocity. 
 
 

5. SUMMARY AND HEALTH MONITORING DISCUSSION 
 

Strain characteristics of composite blades were investigated for water turbine applications.  Three-dimensional 
blades were successfully fabricated and strain instrumentation was attached.  One blade was undamaged and the other 
was structurally compromised.  Finite element simulation results generally matched experimental strain behavior.  For 
the higher magnitudes of measured strain, in which the signal-to-noise ratio was better, the simulation and the 
experimental results matched the best.  For instance, the simulation and measured values in the case of sensor location 1 
and 0.31 m/s flow velocity had percent differences of less than 7%.  The work demonstrates a capability to manufacture 
composite blades and to test the blades in a water tunnel environment. 
 

The strain behavior in the water tunnel shows a strong dependence on water flow and blade angle of attack.  
The presence of damage tended to increase the strain magnitude especially near the blade root.  However, the change in 
strain due to blade damage was very small even though the blade damage was significant.  As a health monitoring 
parameter, a more detailed knowledge of strain in the blade, e.g. through a sensor array, may be needed as an indictor of 
damage.  Also, strain monitoring may need to be combined with other parameters or information, such as power or 
vibration changes, to predict damage.  Future work should look at a more complete understanding of strain in blades, 
especially as a function of the severity and location of damage.  Expected strain levels in field implementations should 
be determined.  Sensor number and placement may be important considerations for an effective monitoring system.   
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